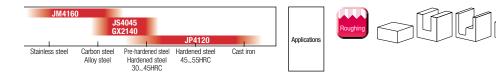


20

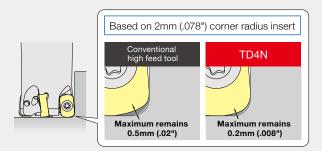
ONIOTO



High Feed Radius Mill TD4N type

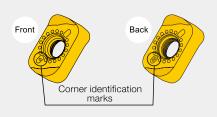
New Product News No. H1801A-2 2020-4

Technology



Reduces uncut portion on work pieces

The cutting edge geometry of the TD4N is designed to minimize remaining stock in the uncut portion of the insert to reduce process variability and cycle time.


New insert design doubles usable corners from 2 to 4 without impacting edge security or performance.

Features 02

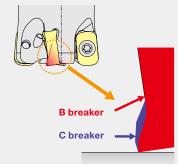
Economical 4-corner inserts with chip breakers for various applications

The TD4N is engineered to utilize both sides of the insert doubling cutting edges from 2 to 4 while maintaining performance and edge security of a single sided insert. As an added plus, the chip breaker rake angle was increased to reduce cutting forces and improve chip discharge.

Features of insert breaker

C breaker

First choice breaker for machine steel 30 to 50 HRC. Breaker is designed to be resistant to chip jamming, vibrations and crater wear.

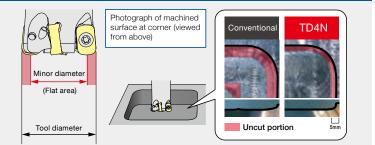


B breaker

Designed for application that require low cutting resistance. The B breaker has a positive rake making it ideal for both stainless and low carbon steels.

Magnified view of cutting edge cross section

Positive rake angle



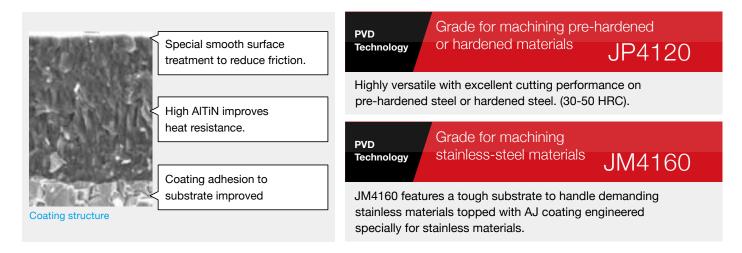
Features

Large minor cutting diameter minimized stock variation

Compared to conventional high feed tools, TD4N high feed cutters have a large minor diameter. The large minor diameter minimizes the uncut material in shoulders and enables an increased width of cut -ae- for improved cutter paths and floor blends without sacrificing performance.

14 Excellent chip discharge characteristics

The next generation TD4N high feed cutter excels in chip control without sacrificing performance.

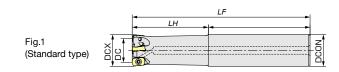

The TD4N insert is designed to curl the chip up and into the new chip pocket design before discharge. The breakthrough concept in high feed milling chip control minimizes the possibility of chip jamming especially when machining shoulders.

Crushed cutting chips

Discharged cutting chips

AJ Coating Series

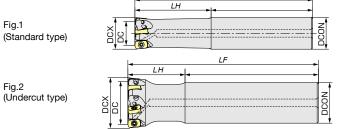
New AJ coating is now applied to all 4100 series inserts. AJ coating features High AlTiN PVD coating technology that delivers both improved heat resistance and coating adhesion. To further increase performance, 4100 series inserts have a special surface treatment that reduces friction and minimizes welding.


Technology General purpose for steel JS4045

JS4045 is an existing PVD coated steel grade selected for the TD4N cutter due to its exceptional toughness in interrupted or unstable applications. JS4045 should be used when JP4120 encounters chipping.

Line Up

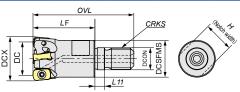
Inch ITD4N2000 -0 Shank type



					Di	mensions (Inc	ch)				
St	yle	Order Number	# of Flutes	DCX	DC	LF	LH	DCON	Туре	Insert	
		ITD4N2010S-2	2	0.625	0.389	4.000	1.250	0.625			
	Re	ITD4N2012S-3	3	0.750	0.514	5.000	2.000	0.750			
	Regul	ITD4N2016S-4	4	1.000	0.764	5.500	2.500	1.000			
Sh	lar	ITD4N2020S-5	5	1.250	1.014	6.000	2.750	1.250			
lank		ITD4N2024S-6	6	1.500	1.264	6.000	1.750	1.500	Fig.1	ENMU0603ER-B/C	
ŝ		ITD4N2010L-2	2	0.625	0.389	6.000	2.000	0.625	Fig. i	ENWID0003ER-D/C	
Style		ITD4N2012L-3	3	0.750	0.514	6.250	3.250	0.750			
	Long	ITD4N2016L-4	4	1.000	0.764	7.000	4.000	1.000			
	2	ITD4N2020L-5	5	1.250	1.014	8.000	5.000	1.250			
		ITD4N2024L-6	6	1.500	1.264	9.000	1.750	1.500			

Shank type **TD4N20**00 (32)-0 Metric

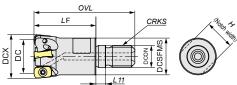
Fig.1 (Standard type)



LF

					Di	mensions (mi	n)				
St	yle	Order Number	# of Flutes	DCX	DC	LF	LH	DCON	Туре	Insert	
		TD4N2016S-2	2	16	10	100	30	16			
	Re	TD4N2020S-3	3	20	14	130	50	20	Fig 1		
	Regular	TD4N2025S-4	4	25	19	140	60	25	Fig.1		
	ar	TD4N2032S-5	5	32	26	150	70	32			
		TD4N2040S32-6	6	40	34	150	45	32	Fig.2		
Shank		TD4N2016L-2	2	16	10	150	50	16	Fig.1		
ank		TD4N2018L-2	2	18	12	150	25	16	Fig.2	ENMU0603ER-B/C	
Style		TD4N2020L-3	3	20	14	160	80	20	Fig.1	ENMODOUSEN-D/C	
yle	-	TD4N2022L-3	3	22	16	160	30	20	Fig.2		
	Lon	TD4N2025L-4	4	25	19	180	100	25	Fig.1		
	g	TD4N2028L-4	4	28	22	180	35	25	Fig.2		
		TD4N2032L-5	5	32	26	200	120	32	Fig.1		
		TD4N2035L-5	5	35	29	200	40	32	Fig.2		
		TD4N2040L32-6	6	40	34	220	45	32	Fig.2		

Modular type ITD4N20 M-Inch



			Dimensions (Inch)										
Order Number	# of Flutes	DCX	DC	LF	OVL	L11	DCON	DCSFMS	CRKS	н	Insert		
ITD4N2010M-2	2	0.625	0.389	0.984	1.653	0.217	0.335	0.504	M8	0.394			
ITD4N2012M-3	3	0.750	0.514	1.181	1.929	0.217	0.413	0.701	M10	0.591			
ITD4N2016M-4	4	1.000	0.764	1.378	2.244	0.217	0.492	0.819	M12	0.669	ENMU0603ER-B/C		
ITD4N2020M-5	5	1.250	1.014	1.575	2.481	0.236	0.669	1.134	M16	0.866			
ITD4N2024M-6	6	1.500	1.264	1.575	2.481	0.236	0.669	1.134	M16	0.866			

Note Do not apply lubricants such as grease, etc. to the contact faces and modular screws of the modular mill, special shanks and special arbor.

Metric

9)tal

					Di	mensions (m	m)				
Order Number	# of Flutes	DCX	DC	LF	OVL	L11	DCON	DCSFMS	CRKS	н	Insert
TD4N2016M-2	2	16	10	25	42	5.5	8.5	12.8	M8	10	
TD4N2018M-2	2	18	12	25	42	5.5	8.5	12.8	M8	10	
TD4N2020M-3	3	20	14	30	49	5.5	10.5	17.8	M10	15	
TD4N2022M-3	3	22	16	30	49	5.5	10.5	17.8	M10	15	
TD4N2025M-4	4	25	19	35	57	5.5	12.5	20.8	M12	17	
TD4N2028M-4	4	28	22	35	57	5.5	12.5	20.8	M12	17	ENMU0603ER-B/C
TD4N2032M-5	5	32	26	40	63	6	17	28.8	M16	22	
TD4N2035M-5	5	35	29	40	63	6	17	28.8	M16	22	
TD4N2040M-6	6	40	34	40	63	6	17	28.8	M16	22	1
TD4N2042M-6	6	42	36	40	63	6	17	28.8	M16	22	

Note Do not apply lubricants such as grease, etc. to the contact faces and modular screws of the modular mill, special shanks and special arbor.

Line Up

Insert

Super Radius Mill

TD4N type

Fig.1 Tougher edge **C breaker** ENMU0603ER-C

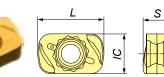
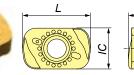
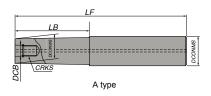



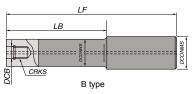
Fig.2 Reduce cutting force **B breaker** ENMU0603ER-B

S

Ρ	Carbon Steel											
М	Stainless Steel						🖬 : Gene	: General cutting, First recommendation				
Κ	Cast Iron				Ľ	Ľ	L : General cutting, Second recommendation					
Н	Hardened Steel											
	Order Number	Tolerance Class	AJ-Coated		JS-Coated	GX-Coated	Size (mm)					
	order Number		JP4120	JM4160	JS4045	GX2140	L	IC	S	Shape		
	ENMU0603ER-C	М	•	•	•	•	10	6	4.0	Fig.1		
	ENMU0603ER-B	IVI	•	•	•	•	- 10	6	4.2	Fig.2		

• Inventory maintained in US Note the GX2140 can not be used with conductive touch sensors.


Material Name ISO Classification	Coating Name Coating Type	Application	Features
JP4120	AJ Coating	For pre-hardened steel (35-50HRC) and alloy steel.	Uses fine grain substrate and AJ coating.
P10-M10-K10	PVD		Suitable for cutting of common steels through pre-hardened steels.
JM4160	AJ Coating	General purpose for stainless steel.	Uses high toughness substrate and AJ coating.
M40	PVD		Suitable for cutting of stainless steels.
JS4045	JS Coating	General purpose for steel.	Uses tough substrate and JS coating.
P30-K30	PVD		Suitable for general steel cutting.
GX2140	GX Coating	Dry high speed cutting for steel 35HRC or less.	Uses tough substrate and GX coating.
P40-K40	CVD		Suitable for dry high speed mild steel cutting.


Parts	In consideration of the env	ironment, the screwdr	iver and screw anti-seizure agent are now solo	I separately.					
Devite	Oloren Corr		Not included with product (sold separately)						
Parts	Clamp Scr	ew	Screw Driver	Screw Anti-Seizure Agent	- Cla on				
Shape		Fastening torque (N∙m)			ats				
Order No.	250-141	1.1	104-T8	P-37					

The clamp screw is a consumable part. Clamp screw replacement is dependent on use, we recommend replacing screw at signs of wear on screw seat chamfer.

Modular Mill Shanks

Carbide shank

Inch

Order Number	Stock	DCB	CRKS	LF	LB	DCONWS	DCONMS	Туре	Cutter Body	Coolant Thru
IASC0.625-M8-4-2	•	8.5mm	M8	4	2	0.571	0.625		ø5/8	0
IASC0.625-M8-6-3	•	8.5mm	M8	6	3	0.571	0.625		(ø16mm/18mm)	0
IASC0.75-M10-5-2.5Z	•	10.5mm	M10	5	3	0.689	0.750		ø3/4	0
IASC0.75-M10-8-4Z	•	10.5mm	M10	8	4	0.689	0.750	A	(ø20mm/22mm)	0
IASC1-M12-6-3Z	•	12.5mm	M12	6	3	0.906	1.00		ø1	0
IASC1-M12-8-4Z	•	12.5mm	M12	8	4	0.906	1.00		(ø25mm/28mm)	0

Metric

Order Number	Stock	DCB	CRKS	LF	LB	DCONWS	DCONMS	Туре	Cutter Body	Coolant Thru
ASC16-8.5-95-30Z	•			95	30					
ASC16-8.5-120-55Z	•			120	55				ø16	
ASC16-8.5-140-75Z	•	8.5	M8	140	75	14.5	16	Α	ø18	0
ASC16-8.5-160-95Z	*			160	95				(ø5/8")	
ASC16-8.5-160-30Z	*			160	30					
ASC18-M10-125-0Z	•			125	-	18	18			
ASC20-10.5-120-50Z	*			120	50					
ASC20-10.5-170-90Z	•			170	90				ø20	
ASC20-10.5-220-120Z	•	10.5	M10	220	120	18.5	20	A	ø22	0
ASC20-10.5-270-150Z	*			270	150	16.5	20		(ø3/4")	
ASC20-10.5-220-50Z	*			220	50					
ASC20-10.5-270-50Z	*			270	50					
ASC25-12.5-145-65	*			145	65	23				
ASC25-M12-150-0Z	•			150	-	25				
ASC25-12.5-215-115	•			215	115				ø25	0
ASC25-12.5-265-145	•	12.5	M12	265	145		25	В	ø28	
ASC25-12.5-315-195	*			315	195	23			(ø1")	
ASC25-12.5-265-65	*			265	C.F.					
ASC25-12.5-315-65	*			315	65					
ASC32-17-160-80	*			160	80					
ASC32-17-210-110	•			210	110					
ASC32-17-260-140	•	17	M16	260	140	28	32	В	ø32	0
ASC32-17-310-190	*			310	190				ø35	
ASC32-17-360-240	*			360	240				ø40	
ASC32-17-260-80	*			260			32		ø42	
ASC32-17-310-80	*	17	M16	310	80	28		В		0
ASC32-17-360-80	*			360						

Inventory Maintained in US

 \star = Inventory Maintained in Japan

O = Tool With Air Hole

07

Recommended Cutting Conditions

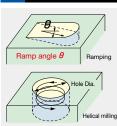
INCH

Red indicates primary recommended insert grade.

Weste Medeole I	Recommended	Tool Diameter	Ø5/8" (2	2 flutes)	Ø3/4" (;	3 flutes)	Ø 1" (4	flutes)	Ø1.25" (5 flutes)	Ø 1.5" (6	6 flutes)
Work Material	Insert Grade	Overhang ratio	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc
		n (min-1)	3380	2990	2710	2390	2170	1910	1690	1490	1350	1190
		Vc (sfm)	558	492	558	492	558	492	558	492	558	492
Carbon Steel	GX2140	Vf (inch/min)	319	282	384	339	410	361	399	352	383	337
Alloy Steel	JS4045	fz (inch/t)	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047	0.047
<30HRC	00-0-0	ap (inch)	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024
		ae (inch)	0.394	0.394	0.551	0.551	0.748	0.748	0.866	0.866	1.102	1.102
		Q (In3/min)	3.9	2.7	6.6	4.5	9.5	6.5	10.7	7.3	13.1	8.9
		n (min-1)	2990	2590	2390	2070	1910	1660	1490	1290	1190	1040
		Vc (sfm)	492	426	492	426	492	426	492	426	492	426
Alloy Steel	JP4120	Vf (inch/min)	235	204	282	244	301	261	293	254	281	246
Tool Steel	JS4045	fz (inch/t)	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039
30 ~ 40HRC	004040	ap (inch)	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024
		ae (inch)	0.394	0.394	0.551	0.551	0.748	0.748	0.866	0.866	1.102	1.102
		Q (In3/min)	2.9	1.9	4.8	3.2	7	4.7	7.9	5.3	9.6	6.5
		n (min-1)	1990	1790	1590	1430	1270	1150	1000	900	800	720
		Vc (sfm)	328	295	328	295	328	295	328	295	328	295
Pre-Hardened Steel	JP4120	Vf (inch/min)	157	113	188	135	200	145	197	142	189	136
Alloy Steel	JS4045	fz (inch/t)	0.039	0.031	0.039	0.031	0.039	0.031	0.039	0.031	0.039	0.031
40 ~ 50HRC		ap (inch)	0.024	0.02	0.024	0.02	0.024	0.02	0.024	0.02	0.024	0.02
		ae (inch)	0.394	0.394	0.551	0.551	0.748	0.748	0.866	0.866	1.102	1.102
		Q (In3/min)	1.5	0.9	2.5	1.5	3.6	2.2	4.1	2.5	5	3
		n (min-1)	1990	1790	1590	1430	1270	1150	1000	900	800	720
		Vc (sfm)	328	295	328	295	328	295	328	295	328	295
		Vf (inch/min)	157	113	188	135	200	145	197	142	189	136
Stainless Steel	JM4160	fz (inch/t)	0.039	0.031	0.039	0.031	0.039	0.031	0.039	0.031	0.039	0.031
		ap (inch)	0.024	0.02	0.024	0.02	0.024	0.02	0.024	0.02	0.024	0.02
		ae (inch)	0.394	0.394	0.551	0.551	0.748	0.748	0.866	0.866	1.102	1.102
		Q (In3/min)	1.5	0.9	2.5	1.5	3.6	2.2	4.1	2.5	5	3
		n (min-1)	3980	3580	3180	2870	2550	2290	1990	1790	1590	1430
		Vc (sfm)	656	590	656	590	656	590	656	590	656	590
	JP4120	Vf (inch/min)	470	338	563	407	602	433	587	423	563	405
Cast Iron	GX2140	fz (inch/t)	0.059	0.047	0.059	0.047	0.059	0.047	0.059	0.047	0.059	0.047
	UNE 140	ap (inch)	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024	0.031	0.024
		ae (inch)	0.394	0.394	0.551	0.551	0.748	0.748	0.866	0.866	1.102	1.102
		Q (In3/min)	5.7	3.2	9.6	5.4	14	7.8	15.8	8.8	19.2	10.7
M					ap≤	0.04						

Use the appropriate coolant for the work material and machining shape.
 These conditions are for general guidance; in actual machining conditions adjust the parameters according to your actual machine and work-piece conditions.

3. Grade GX2140 can not be used with conductive touch sensors.


To prevent tool damage due to chip clogging, always use a chip removal method such as an air blower, etc.
 Ensure to exchange the insert at the correct time to ensure safety of the tool-body.

6. The following equation can be used to determine the metal removal rate per unit time Q:

 $Q(in 3/min) = ap(in) \times ae(in) \times Vf(in/min)$

Do not set values higher than the maximum value.

Regarding ramping and helical milling diameter 0

.9												
Tool Diameter		0.625" or 16mm	18mm	0.75" or 20mm	22mm	1" or 25mm	28mm	1.25" or 32mm	35mm	1.5" or 40mm		
Max r angle		0.8°	0.8°	0.8°	0.8°	0.8°	0.6°	0.5°	0.5°	0.3°		
Hole [Dia. (inch)	0.945"~ 1.181"	1.102"~ 1.339"	1.260"~ 1.496"	1.417"~ 1.654"	1.654"~ 1.890"	1.890"~ 2.126"	2.205"~ 2.441"	2.441"~ 2.677"	2.835"~ 3.071"		
Hole I	Dia. (mm)	24~30mm	28~34mm	32~38mm	36~42mm	42~48mm	48~54mm	56~62mm	62~68mm	72~78mm		

Cutting depth per rotation should be set to ap = 0.04["] (1mm) or less

It is recommended that the tool be used while performing sufficient chip removal and checking that there are no abnormal vibrations.

METRIC

Red indicates primary recommended insert grade.

Werk Meterial	Recommended Insert Grade	Tool Diameter	Ø16 (2 flutes) Ø20 (3 flutes)		Ø25 (4 flutes)		Ø32 (5 flutes)		Ø40 (6 flutes)			
Work Material		Overhang ratio	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc	~ 3Dc	4Dc ~ 7Dc
Carbon Steel Alloy Steel <30HRC		n (min-1)	3380	2990	2710	2390	2170	1910	1690	1490	1350	1190
		Vc (m/min)	170	150	170	150	170	150	170	150	170	150
	GX2140	Vf (mm/min)	8110	7170	9750	8600	10410	9160	10140	8940	9720	8560
	JS4045	fz (mm/t)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	J34043	ap (mm)	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6
		ae (mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	65	43	109	72	158	104	178	118	218	144
		n (min-1)	2990	2590	2390	2070	1910	1660	1490	1290	1190	1040
Alloy Steel Tool Steel 30 ~ 40HRC		Vc (m/min)	150	130	150	130	150	130	150	130	150	130
	JP4120	Vf (mm/min)	5980	5180	7170	6210	7640	6640	7450	6450	7140	6240
	JS4045	fz (mm/t)	1	1	1	1	1	1	1	1	1	1
	JS4045	ap (mm)	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6
		ae (mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	48	31	80	52	116	76	131	85	160	105
Pre-Hardened Steel Alloy Steel 40 ~ 50HRC	JP4120 JS4045	n (min-1)	1990	1790	1590	1430	1270	1150	1000	900	800	720
		Vc (m/min)	100	90	100	90	100	90	100	90	100	90
		Vf (mm/min)	3980	2860	4770	3430	5080	3680	5000	3600	4800	3450
		fz (mm/t)	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8
		ap (mm)	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5
		ae (mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	24	14	40	24	58	35	66	40	81	48
Stainless Steel	JM4160	n (min-1)	1990	1790	1590	1430	1270	1150	1000	900	800	720
		Vc (m/min)	100	90	100	90	100	90	100	90	100	90
		Vf (mm/min)	3980	2860	4770	3430	5080	3680	5000	3600	4800	3450
		fz (mm/t)	1	0.8	1	0.8	1	0.8	1	0.8	1	0.8
		ap (mm)	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5
		ae (mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	24	14	40	24	58	35	66	40	81	48
Cast Iron	JP4120 GX2140	n (min-1)	3980	3580	3180	2870	2550	2290	1990	1790	1590	1430
		Vc (m/min)	200	180	200	180	200	180	200	180	200	180
		Vf (mm/min)	11940	8590	14310	10330	15300	10990	14920	10740	14310	10290
		fz (mm/t)	1.5	1.2	1.5	1.2	1.5	1.2	1.5	1.2	1.5	1.2
		ap (mm)	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6	0.8	0.6
		ae (mm)	10	10	14	14	19	19	22	22	28	28
		Q (cm3/min)	96	52	160	87	233	125	263	142	321	173
Maximum ap (mm)			ap ≤ 1.0									

1. Use the appropriate coolant for the work material and machining shape.

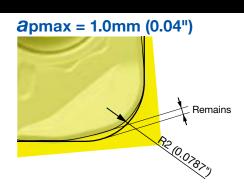
2. These conditions are for general guidance; in actual machining conditions adjust the parameters according to your actual machine and work-piece conditions.

3. Grade GX2140 can not be used with conductive touch sensors.

4. To prevent tool damage due to chip clogging, always use a chip removal method such as an air blower, etc.

5. Ensure to exchange the insert at the correct time to ensure safety of the tool-body.

6. The following equation can be used to determine the metal removal rate per unit time Q:


 $Q (cm3/min) = ap (mm) \times ae (mm) \times Vf (mm/min) / 1000$

Do not set values higher than the maximum value.

• Points requiring care when creating the machining program

- In CAM, define the tool shape as an R2.0 (0.0787") radius shape.
- Use with axial-direction cutting depths ap of 1.0mm (0.04") or less.

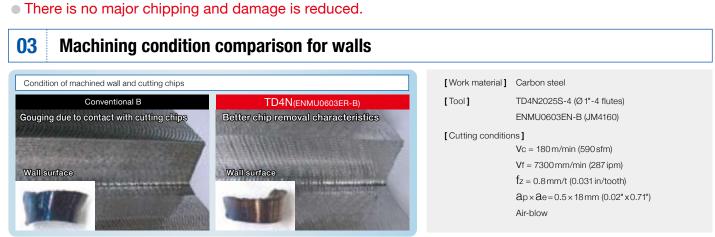
	Corner	R Definition in CAM	Remains (inch/mm)	Over Cut (inch/mm)
		0.0591" / R1.5mm	0.0118" / 0.3mm	0
Re	commended	0.0787" / R2.0mm	0.0079" / 0.2mm	0
		0.1181" / R3.0mm	0	0.0157"/0.4mm

Field Data

6916

|--|

ENMU0603EN-B (JP4120)


Vc = 140 m/min (459 sfm) Vf = 5000 mm/min (197 ipm)

 $f_z = 0.75 \text{ mm/t} (0.03 \text{ in/tooth})$

Emulsion oil

 $a_p \times a_e = 0.8 \times 10 \text{ mm} (0.031" \times 0.394")$

[Cutting conditions]

2mm

VBmax = 0.173mm

• New free cutting design curls chip up and into the pocket minimizing chip discharge contact with walls.

04 High-performance machining when clamp rigidity is weak

Low clamp rigidity	Conventional B	[Work material] Mild steel
	Machining of 190 pcs. TD4N Machining of 200 pcs. VBmax = 0.075mm	[Tool] TD4N2032S-5 (Ø 1.5"-5 flutes) ENMU0603EN-C (JS4045) [Cutting conditions] Vc = 200 m/min (656 sfm) Vc = 200 m/min (656 sfm) Vf = 8000 mm/min (315 ipm) fz = 0.8 mm/t (0.031 in/tooth) ap × ae = 0.5 × 20 mm (0.02" × 0.79") Emulsion oil Emulsion oil

• Even after machining 200 pieces, wear is minimal.

High Feed Tools Lineup

		Feature Holde		Holder	Insert						
Туре		Economical (no. of corners)	High accuracy (Less uncut remnants)	Supports for high- hardened steel	Efficiency (no. of Flutes)	Tool dia.	No of Inscribed		Programing R	Max cutting depth	
TD4N	And the second second	O	O	~50HRC	High efficiency multiflutes	0.625" ~ 1.5" 16mm~42mm	4	0	06	0.0787" or 2.0mm	0.04" or 1.0mm
ASR MULTI			0	○ ~62HRC	High efficiency multiflutes	0.625" ~ 2.5" 16mm ~ 66mm	2	•	06 12	0.0787" or 2.0mm	0.06" or 1.5mm
ASRF-mini		Ø			General	0.75"~2.5" 20mm ~ 63 mm	4	0	07	0.0787" or 2.0mm	0.047" or 1.2mm
ASR			0	 ~60HRC	General	0.75" ~4" 20mm ~100mm	2	?	08~15	0.118" or 3.0mm	0.078" or 2.0mm
IASRT		0	0		General	2"~5"	3	0	09~15	0.118" or 3.0mm	0.078" or 2.0mm
IASRF		O		 ~60HRC	General	1.25" ~ 4"	4	0	12	0.177" or 4.5mm	0.078" or 2.0mm

Handle many kind of roughing machining needs with a plentiful lineup.

* For details of tool specifications, please check on catalog or website (www.moldino.com/en-US/)

The diagrams and table data are examples of test results, and are not guaranteed values. "אסרטוס" is registered trademarks of MOLDINO Tool Engineering, Ltd. in Japan.

Safety Considerations

1. Handling

- (1) When removing tool from packaging, be careful not to drop the tool on your foot or fingers.
- (2) When actually setting the inserts, be careful not to touch the cutting flute directly with your bare hands.

2. Mounting

- (1) When preparing to use, be sure that the insert is firmly screwed in the pocket and cutter is properly mounted on the tool holder.
- (2) If abnormal chattering occurs during use, stop the machine immediately, identify the cause of the chatter and take corrective action.

3. Usage

- (1) Before use confirm all dimensions, verify work material and programmed tool rotation.
- (2) The numerical values in the standard cutting conditions table should be used as criteria when starting new work. The cutting conditions should be adjusted as appropriate when the cutting depth is large, the rigidity of the machine being used is low, or according to the conditions of the work material.
- (3) Inserts are made of hard material and may break and be expelled from cutter at high speeds. Since there is a danger of injury to workers from chip evacuation, insert breakage or fire safety precautions must be observed at all times. Including, but not limited to: safety glasses, machine enclosures or other means to create a safe environment for work. If you have questions on safety, contact your supervisor.
 - · Do not use where there is a risk of fire or explosion.
 - · Do not use non-water-soluble cutting oils. Such oils may result in fire.
- (4) Do not use the tool for any purpose other than that for which it is intended, and do not modify it.

Product Brands Crafted by Mitsubishi Materials U.S.A.

California Office [Headquarters]

3535 Hyland Avenue, Suite 200 Costa Mesa. CA 92626 Customer Service: 800.523.0800 Technical Service: 800.486.2341

Toronto Office [Canada Branch]

3535 Laird Road Units 15 & 16 Mississauga, Ontario, Canada L5L 5Y7 Main: 905.814.0240 Fax: 905.814.0245

Chicago Office [Engineering]

1314B North Plum Grove Road Schaumburg, IL 60173 Main: 847.252.6300 Fax: 847.519.1732

DISTRIBUTED BY:

Detroit Office [MOLDINO Products Customer Service]

41700 Gardenbrook Road. Suite 120 Novi. MI 48375 Main: 248.308.2620 Fax: 248.308.2627 Email: rfgHTdiv@mmus.com (MOLDINO Product & Techinical Inquiry)

MMC Metal de Mexico, S.A. DE C.V.

Av. La Cañada No.16. Parque Industrial Bernardo Quintana, El Marques, Queretaro C.P. 76246 MEXICO Main: +52.442.221.61.36 Fax: +52.442.221.61.34

North Carolina-MTEC [Marketing & Technical Center]

105 Corporate Center Drive, Suite A Mooresville, NC 28117 Main: 980.312.3100 Fax: 704.746.9292

MOLDINO Tool Engineering, Ltd.

www.moldino.com/en-US/

(Manufacturer) 2018 1st Edition NO. H1801A-2 Tools Specifications subject to change without notice.

